Семь проблем тысячелетия


1. Проблема Кука (сформулирована в 1971 г.)
Допустим, находясь в большой компании, вы хотите убедиться, что там же находится ваш знакомый. Если вам скажут, что он сидит в углу, то вам достаточно доли секунды, чтобы, бросив взгляд, убедиться в истинности информации. В отсутствие этой информации вы будете вынуждены обойти всю комнату, рассматривая гостей. Это говорит о том, что решение какой-либо задачи часто занимает больше времени, чем проверка правильности решения.
Стивен Кук сформулировал проблему: может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки. Эта проблема является одной из нерешенных проблем логики и информатики. Ее решение могло бы революционным образом изменить основы криптографии, используемой при передаче и хранении данных.

2. Гипотеза Римана (сформулирована в 1859 г.)

Некоторые целые числа не могут быть выражены как произведение двух меньших целых чисел, например 2, 3, 5, 7 и т. д. Такие числа называются простыми числами, и они играют важную роль в чистой математике и ее приложениях. Распределение простых чисел среди всех натуральных чисел не подчиняется никакой закономерности. Однако немецкий математик Риман сделал предположение, касающееся свойств последовательности простых чисел. Если гипотеза Римана будет доказана, то это приведет к революционному изменению наших знаний в области шифрования и к невиданному прорыву в области безопасности Интернета.

3. Гипотеза Берча и Свиннертон-Дайера (сформулирована в 1960 г.)
Связана с описанием множества решений некоторых алгебраических уравнений от нескольких переменных с целыми коэффициентами. Примером алгебраического уравнения является уравнение x2 + y2 = z2. Евклид дал полное описание решений этого уравнения, но для более сложных уравнений получение решения становится чрезвычайно трудным.

4. Гипотеза Ходжа (сформулирована в 1941 г.)
В ХХ веке математики открыли мощный метод исследования формы сложных объектов. Основная идея заключается в том, чтобы использовать вместо самого объекта простые “кирпичики”, которые склеиваются между собой и образуют его подобие. Гипотеза Ходжа связана с некоторыми предположениями относительно свойств таких “кирпичиков” и объектов.

5. Уравнения Навье – Стокса (сформулированы в 1822 г.)
Если плыть в лодке по озеру, то возникнут волны, а если лететь в самолете, в воздухе возникнут турбулентные потоки. Предполагается, что эти и другие явления описываются уравнениями, известными как уравнения Навье – Стокса. Решения этих уравнений неизвестны, и при этом даже неизвестно, как их решать. Необходимо показать, что решение существует и является достаточно гладкой функцией. Решение этой проблемы позволит существенно изменить способы проведения гидро- и аэродинамических расчетов.

6. Проблема Пуанкаре (сформулирована в 1904 г.)
Если натянуть резиновую ленту на яблоко, то можно, медленно перемещая ленту без отрыва от поверхности, сжать ее до точки. С другой стороны, если ту же самую резиновую ленту соответствующим образом натянуть вокруг бублика, то никаким способом невозможно сжать ленту в точку, не разрывая ленту или не ломая бублик. Говорят, что поверхность яблока односвязна, а поверхность бублика – нет. Доказать, что односвязна только сфера, оказалось настолько трудно, что математики до сих пор ищут ответ.

7. Уравнения Янга – Миллса (сформулированы в 1954 г.)
Уравнения квантовой физики описывают мир элементарных частиц. Физики Янг и Миллс, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения. Тем самым они нашли путь к объединению теорий электромагнитного, слабого и сильного взаимодействий. Из уравнений Янга – Миллса следовало существование частиц, которые действительно наблюдались в лабораториях во всем мире, поэтому теория Янга – Миллса принята большинством физиков несмотря на то, что в рамках этой теории до сих пор не удается предсказывать массы элементарных частиц.

Đăng 1 phản hồi

Required fields are marked *

*
*

%d bloggers like this: