Замкнутая система уравнений гидроаэромеханики.


Уравнения гидроаэромеханики в их упрощенном виде представляют собой сложную систему нелинейных дифференциальных уравнений для массовой плотности r (масса жидкости или газа в единице объема), вектора скорости V и давления p, которые, в свою очередь, являются функциями пространственных координат (например, x, y и z в декартовой системе координат) и времени t.

Не вдаваясь в математические подробности вывода этих уравнений, можно рассмотреть основные идеи этого вывода, тем более, что эти уравнения представляют собой известные даже из школьных учебников законы сохранения массы, импульса и энергии. Для этого рассматривается некоторый физический объем, непрерывным образом заполненный жидкостью или газом. На рис. 1 изображена движущаяся жидкость (или газ), непрерывным образом заполняющая некоторую часть физического пространства.

Выделим из нее некоторый объем U (ограниченный поверхностью S), который в течение всего времени движения состоит из одних и тех же частиц жидкости (этот объем заштрихован).

Рис. 1.  ОБЩАЯ КАРТИНА указанного стрелками течения сплошной среды со скоростью V, в которой выделен объем U, ограниченный поверхностью S с внешней нормалью n.

Рис. 1. ОБЩАЯ КАРТИНА указанного стрелками течения сплошной среды со скоростью V, в которой выделен объем U, ограниченный поверхностью S с внешней нормалью n.

Очевидно, что при своем движении масса жидкости, заключенная в объеме U, остается постоянной (если, конечно, нет каких-либо дополнительных источников этой массы), хотя сам объем может сильно деформироваться, поскольку частицы не скреплены жестко, как в твердом теле. Если выделить из рассматриваемого объема бесконечно малый элемент DU, то очевидно, что в этом элементе масса жидкости или газа будет равна rDU. Тогда закон сохранения массы, заключенной в выделенном объеме U, можно записать в виде

т.е. масса жидкости или газа, заключенная в выделенном объеме U, не изменяется со временем. Здесь интеграл берется по выделенному объему U, который меняется со временем t. Если использовать формулу производной по времени от интеграла по движущемуся объему, можно получить уравнение

где оператор дивиргенции , примененный к произвольному вектору А, в декартовой системе координат будет имеет вид

а – частные производные по времени t и координатам x, y, z соответственно.

Закон сохранения массы в интегральной форме справедлив как для непрерывных, так и для разрывных функций r и V. Для непрерывных функций закон сохранения массы можно записать в дифференциальной форме

Это уравнение в гидроаэромеханике обычно называется уравнением неразрывности.

Аналогично можно записать теперь закон сохранения импульса. Импульс единицы объема жидкости, равен rV, в элементарном объеме rDU, а в выделенном объеме U

Обобщение второго закона Ньютона на жидкие среды заключается в том, что кроме массовых сил (например, силы гравитации), которые действуют на любую частицу жидкости, находящуюся внутри выделенного объема U, действуют еще поверхностные силы, которые возникают от воздействия частиц жидкости, примыкающих к поверхности S с внешней от выделенного объема U стороне. Тогда закон сохранения импульса имеет вид

где pn– вектор поверхностной силы, который действует на элемент поверхности S с единичным вектором нормали n. Одной из основных проблем гидроаэромеханики, окончательно решенной в середине 19 в., является явное определение поверхностных сил. В рамках используемого здесь так называемого феноменологического подхода к получению уравнений гидроаэромеханики, поверхностные силы определяются эмпирически. Дифференцируя по времени интеграл слева в уравнении импульса, как это делалось при выводе уравнения неразрывности, и переходя от поверхностного интеграла справа к объемному, можно написать дифференциальные уравнения движения для непрерывных функций в виде

где

.

а величины u, v и w, а также – являются проекциями векторов скорости V и градиента давления на оси Ox, Oy и Oz соответственно.

Это уравнение, называемое уравнением Навье – Стокса, выписано в наиболее простой форме для несжимаемой жидкости, где поверхностные силы сводятся к нормальному давлению р, а последний член справа представляет собой «вязкие» силы (m – коэффициент вязкости) в предположении, что r = const.

Впервые уравнение движения было выведено в середине 18 в. Л.Эйлером, когда он работал в Петербургской Академии наук. Поскольку эффекты вязкости в жидкости в то время еще не были известны, то Эйлер получил это уравнение при m = 0. В честь его эти уравнения были названы уравнениями Эйлера. Только в 1822 французским инженером Навье в уравнения Эйлера были введены силы, связанные с вязкостью, определяемой коэффициентом m. В общей форме, справедливой и для сжимаемого газа, уравнение получено Стоксом и получило название уравнения Навье – Стокса.

Для несжимаемой жидкости дифференциальные уравнения неразрывности и импульса (одно скалярное и одно векторное) являются замкнутой системой уравнений для определения вектора скорости V и скалярного давления р (r = const). Если же r № const, то требуется дополнительное уравнение. Это уравнение получается из закона сохранения энергии.

Обобщение закона сохранения энергии на случай движения жидкостей и газов получается аналогично обобщению второго закона Ньютона, однако, в силу наличия теплового движения в жидкостях и газах, энергия, приходящаяся на единицу объема, состоит из кинетической энергии rV2/2 и внутренней энергией re, связанной с тепловым движением частиц газа или жидкости. Полная энергия в элементе объема DU равна r(V2/2 + e)DU.

Изменение полной энергии в выделенном объеме U равно притоку тепла через поверхность S за счет теплопроводности, а также работе массовых и поверхностных сил, т.е. вместо закона сохранения импульса, получается уравнение

где n – единичный вектор нормали к поверхности S.

Для совершенного газа e = cv T, где сv – теплоемкость при постоянном объеме, T – температура, а для вектора потока тепла обычно принимается эмпирический закон Фурье q = – l T (l – коэффициент теплопроводности). После соответствующего дифференцирования по времени левой части уравнения энергии, перехода от поверхностных интегралов к объемным и при использовании уравнения неразрывности и уравнения движения, можно получить так называемое уравнение притока тепла для непрерывных функций

Все эти уравнения, вместе с уравнением состояния для совершенного газа

p = r R T,

где R = (ср – сv ) – газовая постоянная, а ср – теплоемкость при постоянном давлении, и законом Фурье

Образуют замкнутую систему уравнений гидроаэромеханики для определения вектора скорости V, давления p, плотности r и температуры Т.

Если какое либо физическое явление мало зависит от диссипативных процессов (вязкости и теплопроводности), то уравнения эти уравнения сводятся к уравнениям гидроаэромеханики идеальной жидкости. В этом случае замкнутой системой уравнений для определения р, r, V и Т является система

(9)

Последнее уравнение есть адиабатический закон, который легко сводится к закону сохранения энтропии. Здесь g = сp/cv – показатель адиабаты, т.е. отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме.

Đăng 1 phản hồi

Required fields are marked *

*
*

%d bloggers like this: